
LA-UR-20-26175
Approved for public release; distribution is unlimited.

Title: CircusTent: A Benchmark Suite for Atomic Memory Operations

Author(s): Williams, Brody Kyle
Leidel, John D.
Wang, Xi
Donofrio, David
Chen, Yong

Intended for: The International Symposium on Memory Systems (MEMSYS 2020),
2020-09-28/2020-10-01 (Washington, District Of Columbia, United
States)

Issued: 2020-08-11

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

CircusTent: A Benchmark Suite for Atomic Memory Operations
Brody Williams

brody.williams@ttu.edu
Texas Tech University

Lubbock, Texas

John D. Leidel
jleidel@tactcomplabs.com

Tactical Computing Laboratories
Muenster, Texas

Xi Wang
xi.wang@ttu.edu

Texas Tech University
Lubbock, Texas

David Donofrio
ddonofrio@tactcomplabs.com

Tactical Computing Laboratories
San Francisco, California

Yong Chen
yong.chen@ttu.edu

Texas Tech University
Lubbock, Texas

ABSTRACT
A paradigm shift is currently taking place in the field of computer ar-
chitecture. Consistent silicon-level processor improvements, relied
upon in the past to drive the augmentation of system scalability,
have stalled. As such, it is widely believed that future systems,
wherein the design of hardware and software are more closely cou-
pled, will need to leverage an increased degree of heterogeneity in
order to realize further improvements.

Parallel processing and corresponding programming models,
already ubiquitous to high performance computing, will play a
crucial role in these systems. Consequently, it is critically important
to understand the interaction between these components. However,
the behavior of atomic operations and associated synchronization
primitives, which already represent a bottleneck in current systems,
is difficult to quantify.

Therefore, in this work, we introduce CircusTent, an open source,
modular, and natively extensible benchmark suite for shared and
distributed memory systems that is designed to measure the perfor-
mance of a target architecture’s memory subsystem with respect
to atomic operations. Herein, we first detail the design of Circus-
Tent, which includes eight different kernels designed to replicate
common atomic memory access patterns using two atomic primi-
tives. We then demonstrate the capabilities of CircusTent through
an evaluation of fourteen different platforms using our OpenMP
benchmark implementation. In short, we believe CircusTent will
prove to be an invaluable tool for the design and prototyping of
emerging architectures.

CCS CONCEPTS
• Computer systems organization → Architectures; • Com-
putingmethodologies→Parallel computingmethodologies;
•Hardware→Memory and dense storage; •General and ref-
erence→ Performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

KEYWORDS
Benchmark, Atomic Memory Operations, OpenMP, MPI, OpenSH-
MEM

ACM Reference Format:
Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen.
2020. CircusTent: A Benchmark Suite for Atomic Memory Operations. In
MemSys ’20: MemSys, Sept 28–Oct 01, 2020, Washington, DC. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The impending demise of both Moore’s Law and Dennard Scaling
has produced a renaissance in the field of computer architecture.
Unable to continue leveraging silicon-level processor improvements
to further enhance performance and scalability, system architects
have been forced to explore other options. In this new era of het-
erogeneous architectures and hardware/software codesign, parallel
processing and associated programming paradigms have become
of paramount importance. Alongside an increased prominence in
traditional high performance computing (HPC) environments in
academia, government laboratories, and industry, parallel process-
ing has also become imperative for consumer-level devices. As
such, a better understanding of the behavior of parallel applica-
tions, and their interaction with the architectures they run on, is
highly desirable in order to ensure optimal performance.

One well understood characteristic of parallel applications is that
they frequently suffer from scalability issues as the number of coop-
erating processing elements (PEs) grows. Often, this performance
degradation can be directly attributed to overheads associated with
the synchronization of active PEs. Consequently, well written ap-
plications utilize synchronization primitives, such as barriers and
mutual exclusion locks, as infrequently as possible. Regrettably, the
nature of parallel applications typically precludes the removal of
all such synchronization methods as they are necessary to prevent
race conditions associated with access to shared data structures
and ensure program correctness. Given the impact synchronization
plays on the scalability and performance of parallel applications,
understanding and optimization of these routines is key.

In many cases, the synchronization primitives described above
are constructed using atomic memory operations. Abstractly, an
atomic memory operation can be defined as an operation that is
uninterruptible. Although an atomic operation may be composed
of several smaller “sub-operations” that would, under other cir-
cumstances, necessitate the execution of multiple instructions to

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

complete, herein these sub-operations are treated as a single, cohe-
sive unit. In this work, we focus on a particularly prominent class
of atomic memory operations known as read-modify-write (RMW)
atomics. Most modern architectures, including x86, RISC-V, and
those produced by ARM, include ISA-level RMW atomic instruc-
tions and provide microarchitectural support for realization of their
execution. As their designation would suggest, RMW atomics load
a single value of a given data type into a specified register, modify
said value, and finally write it back to memory in one unified step.
In this manner, RMW atomic operations can be utilized to safely
set variables underlying more complex synchronization primitives,
such as barriers and locks, in parallel environments.

Further, RMW atomics also constitute a particularly efficient
and fine-grained synchronization primitive in and of themselves.
In many cases, application developers can replace mutex lock en-
capsulated critical code segments with “lock-free” atomic based
synchronization. Doing so allows parallel execution to continue
to the greatest degree possible and often significantly improves
application performance. Many graph-based computational ker-
nels, wherein only access to shared vertex and/or edge data need be
coordinated, employ such an atomic-based synchronization scheme.
In our previous work, we examined the GAP Benchmark Suite [4],
which is designed to replicate the memory access patterns of graph
workloads in a shared memory environment, in order to quantify
the proportion of atomic operations. Therein, we found that, across
all six included kernels, an average of 17.46% of the total instructions
were RMW atomic operation instructions [25]. In this and similar
scenarios, the frequency of atomic memory operations results in
contention that, while less significant than lock-based synchroniza-
tion, has measurable effects on application performance.

A variety of different shared and distributed memory parallel
programming paradigms exist today in order to provide efficient
scaling both within a single node, and across distinct nodes, re-
spectively. Unsurprisingly, variants of high-level synchronization
constructs and atomic memory operations are critical for phys-
ically shared memory paradigms as well as distributed memory
paradigms that utilize a shared memory abstraction. For models
designed specifically for physically shared memory systems, such
as OpenMP or Pthreads, high-level synchronization primitives and
API level atomic operations can be realized through simple wrap-
pers around the appropriate ISA-level atomic instructions. However,
for distributed shared memory parallel programming models, the
implementation of “remote atomics” and associated synchroniza-
tion primitives is more complex. In these models, access to a node’s
local shared memory must be coordinated not only between local
PEs, but also among those located across a network fabric. There-
fore, these remote atomic operations are typically built upon some
combination of RDMA verbs, local barrier synchronizations, and
ISA-level atomic instructions [7][15]. Utilizing a node’s network
interface card to perform the local atomic operations can further
optimize system performance in these models [25]. The prevalence
of distributed memory environments in high performance com-
puting, in conjunction with inherent limits to multicore scaling
[9], illustrate the need to understand the behavior of these remote
atomic operations when designing future systems.

In this work, we propose CircusTent, an open source, modular,
and natively extensible benchmark suite for atomic operations. De-
signed to replicate common atomic memory access patterns in both
shared and distributed memory environments, CircusTent provides
system architects insight into the performance and scalability of a
target architecture’s memory hierarchy. As such, we believe Circus-
Tent will serve as an invaluable tool for the design and prototyping
of future systems [1].

The remainder of this work is organized as follows. Section 2
discusses relevant previous works pertaining to synchronization,
atomic memory operations, and memory subsystem performance.
Section 3 details the design of the CircusTent benchmark suite and
its constituent kernels. Section 4 presents an evaluation of the Cir-
cusTent benchmark suite conducted using a variety of different
architectures and the OpenMP programming model. Section 5 re-
ports our final analysis and conclusions. Finally, Section 6 provides
a brief overview of planned future work.

2 PREVIOUS WORK
2.1 Atomic Operations & Synchronization
Several previous studies have examined the behavior and perfor-
mance characteristics of atomic operations and synchronization
primitives. Villa et al. explored the efficiency and scalabilty of bar-
rier based synchronization on manycore architectures utilizing
intraprocessor interconnects modeled after the design of network-
on-chip paradigms [24]. In this study, the authors evaluated four
different barrier algorithms, implemented in both hardware and
software, using a cycle-accurate simulator. Trials conducted us-
ing up to 128 cores, arranged in five different topologies, revealed
that, at least for similar configurations, hardware based barrier
implementations exhibit better performance for intraprocessor syn-
chronization.

In a similar study, David et al. conducted an extensive inves-
tigation of synchronization that spanned multiple hardware and
software methodologies [8]. Based on the results of their evaluation,
the authors of this work made several important observations. First,
they note that, regardless of the implementation, synchronization
across sockets is far more expensive than intrasocket synchroniza-
tion. In fact, even in the absence of contention, the authors found
that the latency of operations performed on cache lines across sock-
ets increased 2-7.5x as compared to their intrasocket analogs. Sec-
ond, they observe that the organization and behavior of the of the
last-level cache (LLC) plays an important role in synchronization
scalability within a socket. Finally, they perceive that, as the number
of threads contending for access to shared data grows, message-
passing mechanisms often outperform locking schemes. Overall,
for physically shared memory systems such as those utilized in this
work, the authors conclude that the scalability of synchronization
is directly correlated to the system’s architecture.

In [21], Schweizer et al. develop a methodology for analyzing
the latency and bandwidth of atomic operations. In particular, they
study the effects of different cache coherency states and complex
memory hierarchies on these operations. Using their proposed
methodology, they then evaluate three different RMW atomic op-
erations on a number of x86 platforms. As part of this evaluation,
they show that, contrary to popular belief, all of the tested atomic

CircusTent: A Benchmark Suite for Atomic Memory Operations MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC

operations exhibit comparable performance in terms of latency and
bandwidth. Further, they find that, even in the absence of dependen-
cies between instructions, the design of atomic operations on the
tested platforms inherently prevents instruction-level parallelism.

Hoseini et al. also study the properties of atomic operations in
physically shared memory systems [14]. For their investigation,
they monitor accesses to shared cache lines in conditions that sim-
ulate both high and low levels of contention. Notably, for the high
contention environment, wherein requests to a single cache line
become serialized, they examine the scheduling of thread accesses.
For one platform utilizing a Xeon-E5 processor, they were unable
to discern any deterministic scheduling pattern. However, for the
other platform featuring a Knights Landing Xeon Phi processor,
they observe that threads pinned to cores coresident on the same
tile were always scheduled sequentially. This is logical as this pro-
cessor employs L2 caches that are shared between cores on the
same tile, but does not include an LLC shared between all cores.

Summary: Although each of the studies detailed above make
important contributions and advance our understanding of atomic
operations and synchronization primitives, they do so only in a
limited number of carefully controlled scenarios. As such, the be-
haviors and performance characteristics they observe may not be
fully generalizable to varied architectures and applications. Further-
more, the specialized approaches they employ are applicable only
for physically shared memory systems and not easily replicated. In
contrast, CircusTent provides an infrastructure for benchmarking
the performance of atomic operations that is built directly on con-
ventional shared and distributed shared memory parallel program-
ming models. In this manner, CircusTent offers an easily accessible,
uniform means of measuring memory subsystem performance in
common application environments across diverse platforms.

2.2 Transactional Memory
Transactional memory (TM) represents an orthogonal approach to
synchronization that has become increasingly prominent in recent
years. Similar to the use of atomic operations, this paradigm seeks
to avoid the performance overheads associated with lock-based
synchronization. However, it targets concurrent accesses to shared
data at a more coarse-grained level. Rather than operating on a
single value, as with an atomic operation, this approach encapsu-
lates a series of instructions into a “transaction”. In many ways,
these transactions correspond to critical code segments traditionally
protected using lock-based synchronization. In contrast, however,
simultaneous accesses to the data underlying a transaction by dis-
tinct processing elements are not inherently prevented. Instead,
operations on this data are speculatively performed and tracked
across processing elements. In the absence of a conflict, changes to
the data are committed. If a conflict is detected, these changes are
discarded instead. In this manner, transactional memory represents
an optimistic approach to synchronized data access in a parallel
environment.

Previous studies have implemented transactional memory in
both hardware and software. Hardware Transactional Memory
(HTM) was originally proposed by Herlihy and Moss [13]. In this
first work on transactional memory, the authors exploited access
right policies within existing cache coherency protocols to realize

their implementation. This implementation added new ISA-level
instructions, as well as a distinct transactional cache, to enable
hardware-level support for the paradigm. Locations accessed within
the scope of a transaction by these new transactional load and store
variants were traced using an associated read set and write set,
respectively. Ananian et al. described and developed an extension
to HTM that allows transactions to scale to near virtual memory
levels through the use of a memory-resident logging structure [2].

Software Transactional Memory (STM) was first demonstrated
by Shavit and Touitou [22]. The methodology detailed in this work
provided the capabilities of non-blocking transactional memory
to existing systems at the software level through the utilization of
only standard load-linked and store-conditional ISA instructions.
Moreover, it also introduced the concept of helper policies for trans-
actions between processing elements. This initial implementation
was, however, only applicable to static transactions that accessed
a predetermined sequence of memory locations. This limitation
was largely overcome in a subsequent work by Herlihy et al. [12].
Bocchino et al. further expanded the notion of STM and devel-
oped the first implementation targeted towards Partitioned Global
Address Space models in distributed memory environments [6].
Herein, the authors found that, when utilized in conjunction with
the GASNet library, their implementation was able to efficiently
scale to up to 512 processors. In addition to standalone HTM and
STM methodologies, some studies have also sought to couple the
performance of HTM together with the extensibility of STM in a
hybrid approach [3].

Summary: An in-depth comparison of transactional memory
and atomic-based synchronization is beyond the scope of this work.
However, it is worth noting that utilization of HTM is limited to
systems with underlying microarchitecural support. Further, lock-
based synchronization cannot always be directly translated to anal-
ogous transactional memory routines [5]. As such, the performance
of atomic operations and associated synchronization primitives will
be of continued importance to future systems.

2.3 Memory Benchmarks
The Spatter Benchmark, developed by Lavin et al., is also directly
relevant to this work [17]. Although Spatter does not analyze the
performance of synchronization primitives or atomic operations,
similar to CircusTent, it is designed to benchmark the memory
hierarchies of target architectures. More specifically, Spatter mea-
sures an architecture’s memory performance with respect to an
emerging class of indexed memory access patterns known as scatter
and gather operations. Highly tunable, Spatter provides an efficient
means of measuring these irregular, non-uniform memory access
patterns increasingly common to HPC applications in a manner pre-
vious existing benchmarks could not. Currently, Spatter supports
both OpenMP and CUDA backend implementations for both CPU
and GPU-based platforms. As detailed in Section 3.3, CircusTent
also integrates kernels that replicate these memory access patterns,
but does so using atomic operations in lieu of traditional loads and
stores.

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

circustent
command line Options Handler Implementation

Template

OpenMP MPI OpenSHMEM xBGAS Future

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Figure 1: CircusTent Architecture

3 CIRCUSTENT
3.1 Benchmark Overview
The CircusTent benchmark infrastructure is designed to provide
users and system architects the ability to derive normalized, quanti-
tative performance data for atomic memory operations on parallel
systems [1]. For this, we define the following driving requirements.

Derivation of Normalized Results. One of the primary difficulties in
designing future scalable systems is the ability to derive and utilize
quantifiable data to assist in the process of evaluating architec-
tural trade offs. While application benchmark data is of paramount
importance, it is often difficult to synthesize performance charac-
teristics across applications or application kernels. As a result, the
CircusTent benchmark derives a normalized, quantifiable perfor-
mance value regardless of the size and implementation of the target
system.

Programming Model Support. One of the unique characteristics of
the CircusTent infrastructure is its ability to support a multitude
of programming models for shared and distributed memory utiliz-
ing heterogeneous system architectures. Unlike previous memory
benchmarks that were implemented using a single programming
model, CircusTent seeks to exploit the intersection of the system
architecture and programmingmodel. Disparate programmingmod-
els present atomic memory operations using a variety of methods
that include compiler intrinsics, programming model directives,
and explicit function calls. Therefore, CircusTent permits architects
to utilize the benchmark with the application programming model
most relevant to their constituent users.

System-Specific Optimizations. In addition to supporting a myriad
of programming model backends, the CircusTent infrastructure also
has the ability to support system-specific optimizations. As each
programming model implementation is supported via a base imple-
mentation template, users have the ability to prescriptively utilize
system-specific optimizations such as inline assembly language or
compiler intrinsics to induce system-specific behavior.

Pathological Kernels. Finally, in order to mimic a wide array of appli-
cation memory access patterns, CircusTent is designed to support
eight pathological kernels that replicate common memory access
patterns of interest. The patterns include unit stride, non unit stride,

irregular, or entirely random accesses to memory locations using
a variety of loop constructs. Further, each pathological kernel can
be implemented using various different styles of atomic memory
operations. We currently implement CircusTent backends using
atomic Add and Compare-and-Swap (CAS).

As we see in Figure 1, the CircusTent infrastructure is con-
structed using a C++ inheritance model whereby operations such as
command line parsing and benchmark option handling are common
across all supported programming models. The implementation
template is a C++ base class that is utilized to encapsulate each
individual programming model implementation. Operations such
as memory allocation, deallocation, and programming model ini-
tialization are provided by base-level member routines that are
overridden by each respective programming model. In this manner,
each programming model implementation has the ability to utilize
it’s respective initialization and allocation routines.

In addition to the aforementioned initialization and allocation
routine functions, each programming is also required to implement
individual versions of each benchmark algorithm (Section 3.3). For
each algorithm defined, the implementation can be optimized using
the respective programming model constructs in order to induce
optimal performance.

3.2 Programming Models
The current set of programming models supported by CircusTent
includes OpenMP, MPI, OpenSHMEM, and xBGAS [18]. As men-
tioned above, each respective implementation contains a unique set
of initialization, memory allocation, and execution functions. The
initialization functions perform any necessary device discovery,
library initialization, and rudimentary setup as required for each
programming model. Similarly, the memory allocation routines
are utilized by each programming model to allocate and initialize
two data structures. The VAL data structure is a linear array that
that may span multiple nodes and contains target data. The IDX
data structure is also a linear array that may span multiples nodes
and contains indices within the scope of the VAL data structure.
Currently, all the backend implementations utilize unsigned 64-bit
integers (uint64_t) for each data and index value. Notably, the
initialization and allocation time is not included in the algorithmic
runtime reported by the top-level driver functions. Finally, each

CircusTent: A Benchmark Suite for Atomic Memory Operations MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC

of the respective models contains an optimized implementation
of each kernel that utilizes both target atomic memory operation
types, atomic Add and Compare-and-Swap.

3.2.1 OpenMP. The first programming model utilized to imple-
ment a CircusTent backend is OpenMP. The OpenMP backend
is rather simple and does not include a large number of CPU or
memory-specific optimizations. As OpenMP is utilized in only phys-
ically sharedmemory environments, this backend employs standard
malloc routines for the VAL and IDXmemory management. Further,
as we sought to make the OpenMP backend as portable as possible,
it does not utilize any explicit NUMA optimizations. For each of
the target kernels, we utilize the OpenMP for loop construct to
parallelize the algorithms across multiple PEs. The default schedul-
ing paradigm, as defined by the OpenMP runtime, is also utilized.
For each atomic operation, we exploit the GNU atomic builtins us-
ing the __ATOMIC_RELAXED argument such that architectures with
weak memory ordering may have multiple requests in flight.

3.2.2 MPI. The second programming model utilized to implement
a CircusTent backend is MPI. Specifically, we utilize the MPI-3
specification [10] [11] to implement this distributed memory back-
end. The MPI backend is constructed using MPI-3 window con-
structs for dynamic, one-sided RMA operations. Each of the VAL
and IDX constructs are locally allocated and mapped into a dynamic
window. Within the kernel implementations of each algorithm,
we utilize one sided operations, MPI_Get and MPI_Put, to fetch
normal index values. Similarly, the MPI_Compare_and_swap and
MPI_Fetch_and_op MPI-3 atomic operation function calls are uti-
lized for realization of the actual atomics. Depending upon the MPI
library utilized at compile time, each of the aforementioned MPI
atomic operations may be implemented utilizing combinations of
OS system calls, microarchitectural atomic operations, and remote
direct memory access (RDMA) operations on the interconnect.

3.2.3 OpenSHMEM. The next programming model utilized to im-
plement a CircusTent backend is OpenSHMEM [23] [20]. OpenSH-
MEM consists of a runtime infrastructure and set of common func-
tion interfaces that provide distributed memory systems a shared
memory view via a symmetric heap managed by the runtime. Simi-
lar to other parallel programming models such as MPI, OpenSH-
MEM provides native interfaces for atomics, one-sided communica-
tion, and memory allocation routines. For CircusTent, we utilize
the standard set of OpenSHMEM memory management routines
(shmem_malloc) in order to allocate the VAL and IDX constructs in
the symmetric heap. Similar to the MPI-3 implementation, we uti-
lize native OpenSHMEM one-sided operations, shmem_long_get
and shmem_long_put, to fetch normal index values. We utilize the
native OpenSHMEM atomic function interfaces, shmem_long_fadd
and shmem_long_cswap, for atomic Add and Compare-and-Swap,
respectively.

3.2.4 xBGAS. The final programming model currently utilized to
implement a CircusTent backend is the xBGAS runtime infrastruc-
ture [18] [16]. xBGAS is a project to construct a microarchitec-
tural extension to the RISC-V instruction set in order to provide
instruction-level shared memory access across distributed mem-
ory systems. The xBGAS runtime infrastructure mimics the form

and function of the OpenSHMEM infrastructure. It provides rudi-
mentary memory management routines for hardware-accelerated
symmetric heap allocation (xbrtime_malloc) as well as function
wrappers for xBGAS-accelerated global shared memory access in-
structions. The xBGAS backend directly employs atomic variants
of these functions, xbrtime_ long_atomic_add and
xbrtime_long_atomic_compare_swap, to realize its constituent
atomic operations.

3.3 Algorithms
The CircusTent infrastructure contains eight individual benchmark
kernels. Each kernel is described in terms of a generic atomic mem-
ory operation, or AMO. However, each kernel may be implemented
using any platform-supported atomic operations. In the case of
this study, we utilize atomic Add and atomic Compare-and-Swap
operations to implement each kernel, respectively.

3.3.1 Random Access. The first kernel is a basic random access
kernel (Algorithm 1). This kernel allocates two array structures.
The VAL array contains a series of values. The IDX array contains a
series of valid indices within the scope of the VAL array. Prior to the
execution of the kernel, these indices are randomly selected and
written to the IDX array using a linear congruential randomizer.
For each iteration of the loop, a single VAL array entry is updated
using an atomic operation. In this manner, the random access kernel
contains one memory load (IDX[i]) and one atomic operation for
each iteration of the loop. The goal of this kernel is to observe the
performance of atomic operations when the platform has a limited
ability to cache data for subsequent iterations.

Algorithm 1: Random Access Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

AMO(VAL[IDX[i]])
end

3.3.2 Stride-1. The second kernel encapsulates a simple, stride-
1 kernel (Algorithm 2). The kernel allocates a single array (VAL)
that contains a series of values. For each iteration of the loop, the
kernel updates a single value in the array in linear fashion using
a single atomic operation. In this manner, a platform may utilize
data prefetching and/or caching in order to optimize the access to
data members in this kernel in an optimal manner similar in form
to dense vectors or matrices.

Algorithm 2: Stride-1 Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

AMO(VAL[i])
end

3.3.3 Stride-N. The third kernel is similar in form to the second
kernel. In this kernel, we utilize the same VAL array structure as
mentioned above, but we permit the user to define the unit stride
by which we access the array (Algorithm 3). For example, if the user
seeks to determine what the raw memory bandwidth is of parallel

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

atomics by forcing every access to induce a cache line miss, the
stride-n kernel can accomplish this. Further, for each parallel PE
participating in the kernel execution, the starting index is at least
iters distance from the previous PE.

Algorithm 3: Stride-N Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 𝑠𝑡𝑟𝑖𝑑𝑒 do

AMO(VAL[i])
end

3.3.4 Pointer Chase. The fourth kernel included in the CircusTent
suite is a pointer chasing kernel (Algorithm 4). Similar to the ran-
dom access kernel, this kernel makes use of an IDX array. In this
case, however, each preassigned random index within the array
corresponds to another element of IDX. Each PE begins the kernel
loop by performing an atomic operation to an array location, start,
determined using the PE’s rank identifier. For each subsequent iter-
ation, the executed atomic operation is directly dependent on the
index determined in the previous repetition. This kernel therefore
replicates the irregular memory access patterns common to many
applications that utilize linked data structures such as graphs.

Algorithm 4: Pointer Chase Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

start = AMO(IDX[start])
end

3.3.5 Central. The fifth kernel is unique among those included in
the CircusTent suite. Rather than emulate a typical memory access
pattern, the Central kernel is designed to measure performance
in a worst case scenario (Algorithm 5). Within each iteration of
this kernel, every active PE performs an atomic operation to the
same shared memory location, given by VAL[0]. As a result, these
accesses become serialized and performance quickly plateaus as the
level of contention rises. Depending on the underlying architecture,
this behavior can also severely tax the cache hierarchy and associ-
ated interconnects. For distributed shared memory systems, it also
stresses the network interconnect. Given the above, this kernel can
be used to estimate minimum performance for applications that
feature frequent memory hot spots.

Algorithm 5: Central Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

AMO(VAL[0])
end

3.3.6 Scatter. The sixth kernel replicates the scattermemory access
pattern found inmanymodernHPC applications (Algorithm 6). This
pattern is characterized by the combination of sequential loads to-
gether with randomly indexed stores. As such, this kernel, wherein
the VAL and IDX arrays are constructed as in the random access

kernel, performs multiple atomic operations during each of its it-
erations. In the first step of a given iteration, the target atomic
operation is used to obtain a random destination index, given by
dest, from the IDX array. Next, a value to be stored, val, is similarly
obtained. Finally, an atomic operation is executed on the memory
location denoted by VAL[dest] using argument val.

Algorithm 6: Scatter Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

dest = AMO(IDX[i+1])
val = AMO(VAL[i])
AMO(VAL[dest], val) // VAL[dest] = val

end

3.3.7 Gather. The Gather kernel (Algorithm 7) can be considered
the inverse of the Scatter kernel detailed above. Whereas the latter
utilizes sequential loads in conjunction with random stores, the
former combines loads from randomly indexed locations with se-
quential stores. Here, an atomic operation first procures a random
index, src, from the IDX array. A store value, val, is then set from
the memory location corresponding to src using a subsequent
atomic operation. In the final step, val is used as an argument to
the atomic operation that writes to the VAL array in a sequential
manner across iterations.

Algorithm 7: Gather Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

src = AMO(IDX[i+1])
val = AMO(VAL[src])
AMO(VAL[i], val) // VAL[i] = val

end

3.3.8 Scatter/Gather. The final kernel included in the CircusTent
suite is also the most complex, utilizing a total of four atomic oper-
ations (Algorithm 8). Aptly named, the Scatter/Gather kernel com-
bines the random access components of Algorithms 6 & 7. Within
each loop iteration of this kernel, the first and second atomic oper-
ations set random indices src and dest, corresponding to source
and destination memory locations, respectively, using the IDX array.
The third atomic operation then sets val from the location given in
src. The final atomic operation is executed on the location denoted
by dest using val as an argument. The memory access patterns
exhibited by kernels 6, 7, and 8 imitate those commonly found in
applications that perform computation using sparse matrices.

Algorithm 8: Scatter/Gather Kernel
for 𝑖 ← 0 to 𝑖𝑡𝑒𝑟𝑠 by 1 do

src = AMO(IDX[i])
dest = AMO(IDX[i+1])
val = AMO(VAL[src])
AMO(VAL[dest], val) // VAL[dest] = val

end

CircusTent: A Benchmark Suite for Atomic Memory Operations MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC

Benchmark AMOs Per Iteration

Rand 1
Stride-1 1
Stride-N 1

Pointer Chase 1
Central 1
Scatter 3
Gather 3

Scatter/Gather 4

Table 1: Atomic Operation Distribution

We summarize the number of atomic operations required to
perform each kernel in Table 1. However, this may vary depending
upon how each platform implements a respective atomic operation.
The CircusTent implementation infrastructure supports the ability
to override these defaults for each platform/programming model.

3.4 Normalizing the Results
Given the native extensibility of CircusTent to support a multitude
of programming models and platforms, we seek to develop a nor-
malized metric such that we can compare results across platforms
and differing degrees of execution parallelism. For this purpose, we
introduce the GAMs metric.

The GAMs, or billions of atomic operations per second, metric
encapsulates the number of parallel execution elements (PEs), the
atomic operation algorithmic complexity, and the wall clock execu-
tion time into a single metric. As we see in Equation 1, the metric
is a ratio of the total number of atomic operations executed for all
parallel execution elements (in billions) across all iterations and the
wall clock execution time. The atomic operation algorithmic com-
plexity is the total number of atomic operations required for a single
PE to execute a single iteration of the target CircusTent kernel. This
is equivalent to the AMOs Per Iteration column in Table 1.

𝐺𝐴𝑀𝑠 =
(𝑃𝐸𝑠 × 𝐼𝑡𝑒𝑟𝑠 ×𝐴𝑀𝑂𝑠_𝑃𝑒𝑟_𝐼𝑡𝑒𝑟)/1𝑒9

𝑡𝑖𝑚𝑒
(1)

4 BENCHMARK EVALUATION
In order to verify and demonstrate the capabilities of the CircusTent
benchmark suite, we conducted an evaluation of a diverse set of
platforms with respect to atomic memory operations. In the interest
of space, and in order to provide a comprehensive introduction to
CircusTent and its constituent kernels in Section 3, we evaluated
only our OpenMP backend in this work. The evaluation of other
backend implementations is left for a future work. We first intro-
duce our test platforms and briefly describe pertinent details of their
architecture in Section 4.1. We next detail our evaluation method-
ology in Section 4.2. Results for each of the CircusTent benchmark
kernels are presented in Section 4.3. Finally, we analyze and discuss
observed patterns and performance characteristics in Section 4.4.

4.1 Platforms
We evaluate CircusTent across a total of fourteen distinct platforms
that encompass device classes ranging from embedded systems

to those used in petascale-class supercomputers. These systems
feature single and dual socket configurations utilizing processors
from Intel, AMD, and ARMwith varied instruction set architectures,
clock frequencies, and core counts. Similarly, the total memory
capacity differs across platforms. Table 2 provides an overview of
our test platform specifications wherein each system is denoted
by its processor model. The size of the VAL array used during our
evaluation, as well as the compiler used to build CircusTent, is also
shown for each platform.

As the organization of each system’s cache hierarchy is an im-
portant factor to its benchmark performance, some further detail
in this regard is warranted. Many of the processors featured in
our test platforms adhere to a somewhat standard cache hierarchy
design. Each of these processors feature a three-level hierarchy
wherein the L1 and L2 caches are private to each core and the L3
caches are shared between cores in a given socket. Each L1 cache
is subdivided into L1i and L1d caches for instructions and data,
respectively. For the sake of brevity, we detail only systems whose
cache organization deviates from this norm, and how they do so,
below.

• Cortex-A53 - The Arm Cortex-A53 is hosted on a Raspberry
Pi Model 3B+. This model features four cores, each with a
private 32KiB L1 cache and a 512KiB shared L2 cache. The
Cortex-A53 does not have any cache levels beyond L2.

• Cortex-A72 - Similar to the A53, the A72 has two cache levels.
The L1 cache is split between a 32KiB instruction cache and
a 48KiB data cache. The 1MiB L2 cache is shared amongst
all the cores with no further caching layers.

• Ryzen V1605B - The AMD Ryzen V1605B embedded x86_64
socket is hosted via an Udoo Bolt platform. The processor
features an L1 cache split between a 256KiB instruction cache
and a 128KiB data cache. The L1 instruction cache is 4-way
set associative and the data cache is 8-way set associative.
The L2 cache is 2MiB using an 8-way set associative configu-
ration. The L3 cache is also 8-way set associative with 4MiB
of capacity.

• Core i7-4980HQ - In addition to a conventional 6 MiB L3
cache shared between cores, this processor also features a
128 MiB eDRAM L4, or “Crystal Well", cache that is shared
between the CPU cores and the integrated GPU.

• Xeon Phi 7250 - The 68 cores present in this processor are
arranged in 34 tiles of 2 cores each. Herein, cores coresident
within a tile share a 1MiB L2 cache. Although it does not
incorporate a true shared last level cache, this processor fea-
tures 16 GiB of MCDRAM that can be used as addressable
memory, a shared cache across all cores, or in a hybrid con-
figuration. For our evaluation, the MCDRAM is utilized in
the cache configuration.

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

System Clock Frequency Cores /
Socket

Total Sockets LLC Size
/ Socket

Total Memory Array Size Operating
System

Compiler

Cortex-A53 1.40Ghz 4 1 512KiB 512MiB 256MiB Ubuntu
18.04 4.15.0

GCC 7.4.0

Cortex-A72 1.50Ghz 4 1 1MiB 4GiB 256MiB Debian
10.1 4.19.75

GCC 8.3.0

Ryzen V1605B 1.58Ghz 4 1 4MiB 32GiB 15GiB Ubuntu
19.04 5.2.10

GCC 8.3.0

Opteron 4130 2.60Ghz 4 2 6MiB 64GiB 15GiB Centos7
3.10.0

GCC 8.3.1

Core i5-3210M 2.50Ghz 2 1 3MiB 4GiB 256MiB macOS
10.13.6

clang 9.1.0

Core i7-3930K 3.20Ghz 6 1 12MiB 64GiB 15GiB Linux Mint
18.3 4.15.0

GCC 5.4.0

Core i7-4980HQ 2.80Ghz 4 1 6MiB L3 +
128MiB L4

16GiB 15GiB macOS
10.15.3

GCC 9.2.0

Xeon Phi 7250 1.40Ghz 68 1 16GiB
MCDRAM

96GiB 15GiB SLES
4.12.14

GCC 8.3.0

Xeon E5620 2.40Ghz 4 2 12MiB 48GiB 15GiB Ubuntu
16.04 4.4.0

GCC 5.4.0

Xeon X5650 2.67Ghz 6 2 12MiB 64GiB 15GiB Ubuntu
18.04 4.15.0

GCC 7.5.0

Xeon E5-2620 v3 2.40Ghz 6 1 15MiB 64GiB 15GiB Ubuntu
16.04 4.4.0

GCC 5.4.0

Xeon E5-2670 v2 2.50Ghz 10 2 25MiB 64GiB 15GiB Centos7
3.10.0

GCC 7.3.0

Xeon E5-2695 v4 2.10Ghz 18 2 45MiB 192GiB 15GiB Centos7
3.10.0

GCC 7.3.0

Xeon E5-2698 v3 2.30Ghz 16 2 40MiB 128GiB 15GiB SLES
4.12.14

GCC 8.3.0

Table 2: Benchmark System Configurations

4.2 Methodology
Consistent with previous studies [24][8][21][14], we perform our
initial evaluation of the CircusTent suite in the context of a physi-
cally shared memory environment. In order to do so, we execute
each of the CircusTent benchmark kernels, detailed in Section 3.3,
on the test platforms introduced above using our OpenMP backend.
For each kernel, we conduct trials using implementations based on
both the atomic Add and Compare-and-Swap primitives. A uniform
stride size of 𝑁 = 9 is utilized for each trial of the StrideN kernel.

We collect performance results for each platform. In order to
eliminate any performance volatility associated with simultaneous
multithreading, we vary the thread count during our trials from a
single thread, up to one thread per physical core, for each platform.
Similarly, 64-bit operands are used throughout the evaluation to
prevent any inconsistencies. Moreover, to better simulate real-world
behavior, we allow the operating system and programming model
to perform the mapping of threads to processor cores.

Where feasible, a uniform size of approximately 15 GiB is utilized
for the VAL array on each platform. For the Cortex A-53, Cortex A-72,
and Core i5-3210M systems, wherein physical memory limitations
make this configuration impractical, a 256 MiB VAL array is utilized
instead. In order to generate sufficient runtime such that observable

patterns of behavior emerge, twenty million iterations of each
kernel loop are run during every benchmark trial. We utilize our
normalized GAMs metric, as introduced in Section 3.4, throughout
our evaluation to measure and compare the performance of our
diverse set of test platforms.

4.3 Results
4.3.1 Random Access. We first examine our benchmark results
from the Random Access kernel as shown in Figure 2. Overall, our
test platforms manifest lower GAMs performance for this kernel
than in the majority of subsequent benchmarks. This behavior can
be directly attributed to the irregular, unpredictable memory access
patterns inherent in this kernel. In particular, the Core i7-4980HQ,
Opteron 4130, and Cortex-A72 systems showcase the poorest per-
formance across all our test platforms when utilizing four or fewer
threads. For the same number of threads, the Xeon E5-2695 v4,
Core i7-3930k, and Xeon-2698 v3 systems record the highest GAMs.
Interestingly, with the exception of the Xeon E5-2695 v4, the Core
i5-3210M system outperforms every other platform when executing
with one or two threads. It is also notable that Compare-and-Swap
implementations of this kernel outperform atomic Add implemen-
tations for the same platform. A noticeable drop in performance,

CircusTent: A Benchmark Suite for Atomic Memory Operations MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC

Figure 2: Random Benchmark GAMS

Figure 3: Stride-1 Benchmark GAMS

corresponding to thread placement across sockets, is also distin-
guishable for the Xeon E5-2698 v3 platform in this benchmark.

4.3.2 Stride-1. Our results for the Stride-1 kernel benchmark, shown
in Figure 3, clearly contrast with those of the previous kernel.
Herein, we see a marked improvement in the GAMs performance
of the majority of our test platforms. This divergence is particularly
prominent for some of our more powerful platforms such as the
Xeon E5 class systems and the Core i7-3930k. However, the Core i7-
4980HQ platform, which performed poorly in the Random Access
benchmark, also makes unmistakable improvements. Orthogonally,
the Core i5-3210M system performs much more poorly in com-
parison. Similar to the previous benchmark, a noticeable dip in
performance occurs at 17 threads for the Xeon X5-2698 v3 system.
Unlike the Random Access benchmark, there is little discernible
performance variation between CAS and Add kernel implementa-
tions within a platform. For this benchmark, some unusual behavior
is also demonstrated by the Xeon Phi 7250 platform, wherein the
performance becomes erratic around 46 threads. We detail our
conclusions in regard to this system in Section 4.4.2.

4.3.3 Stride-N. The results of our Stride-N kernel benchmark, il-
lustrated in Figure 4, align most closely with those demonstrated
by the Stride-1 benchmark. Here, the GAMs performance exhibited
by each platform is much higher than it was for the Random Access

Figure 4: Stride-N Benchmark GAMS

kernel. Indeed, theGAMs recorded for this kernel often exceed those
shown for the Stride-1 kernel. We attribute this behavior to the fact
that each thread operates most often on distinct memory segments
within this kernel. This improves each thread’s private cache uti-
lization while minimizing cache line invalidations. It also explains
the absence of the cross-socket performance degradation demon-
strated by the Xeon E5-2698 v3 system in other kernel benchmarks.
The platforms that performed well during the Stride-1 benchmark,
such as the Core i7-3930k and Xeon E5-2698 v3 systems, also ex-
hibit impressive performance for this kernel. Our Ryzen V1605B
platform also performs well in comparison. Likewise, those that
performed poorly in the Stride-1 benchmark, including the Opteron
4130 and Cortex systems, often replicate that behavior here. In fact,
the Core i5-3210M systemmanifests the poorest performance in this
benchmark across all tested platforms. Also similar to the Stride-1
benchmark, with the exception of the Xeon Phi 7250 system, very
little performance variation is measured between the CAS and Add
kernel implementations. Orthogonal to the Stride-1 benchmark,
there appears to be a hard upper bound in regard to the scalability
of each platform for this kernel. Given the behavior of this kernel
and our demonstrated results, we ascribe this bound to be a func-
tion of each platform’s cache size. The presence of the on-package
16GiB MCDRAM, configured as a last-level cache, may also help
explain why this generalization does not apply to the CAS kernel
implementation on the Xeon Phi 7250 platform.

4.3.4 Pointer Chase. We next investigate the results of our Pointer
Chase kernel benchmark. As shown in Figure 5, the GAMs per-
formance for this kernel across platforms is lower than each of
the previously detailed benchmarks. Similar to the Random Access
kernel, this kernel exhibits irregular, unpredictable memory access
patterns. However, in contrast to the Random Access kernel, the
Pointer Chase kernel performs atomic operations to memory lo-
cations within the IDX array. Since the size of this array is based
on a static calculation, and is typically much smaller than the VAL
array, this behavior results in an increased number of cache line
invalidations and associated cache misses. Consequently, the ability
of the cache to improve system performance is severely diminished.
As a result, the benefits to performance offered by large caches are
effectively nullified in this benchmark and, in most cases, our more
powerful systems perform little better than their counterparts for

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

Figure 5: Pointer Chase Benchmark GAMS

Figure 6: Central Benchmark GAMS

the same number of threads. Notably, the Xeon Phi 7250 platform al-
most uniformly records the lowest GAMs performance regardless of
thread count. Further, its erratic behavior as the number of threads
increases, as noted for other kernels, is particularly prominent in
this benchmark and begins at a much lower number of threads. The
results from this benchmark are also the first to showcase a distinct
performance benefit for atomic Add based kernel implementations
as compared to CAS implementations.

4.3.5 Central. Although the Random Access and Pointer Chase
kernels perform more poorly than the Stride-1 and Stride-N kernels,
the GAMs measured in our Central kernel benchmark, as shown
in Figure 6, are by far the lowest of any in the CircusTent suite. As
each thread performs an atomic operation to a common memory
location during each iteration of the kernel loop, the measured
GAMs performance for this kernel is directly dependent on the
characteristics of a target architecture’s memory subsystem. Since
the number of requests any memory hierarchy can service within
a given time frame is limited, the GAMs performance of this ker-
nel for a given platform will eventually plateau as the number of
PEs increases. Although several of our systems, such as the Xeon
E5 class systems, may not have reached their zenith, our results
demonstrate that many of our other platforms quickly reach such
a plateau. Indeed, none of our test platforms ever exceed 2 GAMs
in this benchmark. As contention for memory access represents

Figure 7: Scatter Benchmark GAMS

a limiting factor in this benchmark, other components that con-
tribute to a system’s performance are less visible in these results.
This explains the absence of any cross-socket performance decline
for the Xeon E5-2698 v3, or any other, platform. In addition to
our Xeon E5 platforms, which continue to perform well across dis-
parate kernels, our Ryzen V1605B system also registers exceptional
performance in this benchmark. In fact, the Ryzen system has the
highest GAMs performance of any platform for 4 or fewer threads.
In contrast, our Cortex-A72, Cortex-A53, Xeon Phi 7250, and Core
i5-3210M systems again represent the lowest performers for this
benchmark. However, the Opteron 4130 platform performs slightly
better than in previous trials. Similar to the Pointer Chase kernel,
the Central kernel seems to elicit higher performance from atomic
Add implementations.

4.3.6 Scatter. The results for our Scatter kernel benchmark are
shown in Figure 7. The most immediately observable characteristic
of this graph is the steadily increasing performance of each platform
as the number of threads increases. The only major exception to this
behavior is manifested by the Xeon Phi 7250 system beyond approx-
imately 56 threads. Another observation can be made in regard to
the relative performance of our test platforms in this benchmark. In
general, each system exhibits improved performance as compared
to the Random Access and Pointer Chase benchmarks, but poorer
performance compared to the Stride-1 and Stride-N benchmarks.
Given what we know about the memory access patterns of these
previous kernels, these results imply that the indexed access pat-
terns present in the Scatter kernel are able to leverage the cache
hierarchy to improve performance to some degree. The higher per-
formance exhibited by our Xeon and Core i7-3930k systems lend
some credence to this conclusion. However, the fact that our Core
i5-3210M platform records the highest GAMs across all tested plat-
forms suggests other factors may also play a role. Moreover, the
poor performance of the Core i7-4980HQ system, which features
an L4 cache in addition to a conventional L3, further increases
this likelihood. Another notable characteristic of this kernel is that
our Xeon e5-2698 v3 platform again experiences a drop in perfor-
mance associated with cross-socket thread placement. However,
this behavior only occurs for the atomic Add kernel implemen-
tation. Whereas other kernels demonstrated often demonstrated
improved performance for a particular atomic primitive, the Scatter

CircusTent: A Benchmark Suite for Atomic Memory Operations MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC

Figure 8: Gather Benchmark GAMS

Figure 9: Scatter/Gather Benchmark GAMS

kernel seems to perform equally well for either CAS or Add kernel
implementations.

4.3.7 Gather. Given the relationship between the Scatter andGather
kernels, it is unsurprising that our Gather benchmark results share
many similarities with those detailed in Section 4.3.6. In fact, as
shown in Figure 8, the GAMs performance across platforms for this
kernel closely emulate those exhibited by the Scatter kernel. Both
benchmarks demonstrate the same predictable improvement to the
measured GAMs performance as the number of threads increases.
Further, the GAMs performance of given a platform in the Gather
benchmark is approximately equivalent to its performance in the
Scatter benchmark. For our Xeon E5-2698 v3 platform, the now
familiar cross-socket performance decline is also replicated only
for the atomic Add implementation of the Gather kernel. With the
exception of this system, the performance of the Gather kernel
is likewise comparable for atomic Add and CAS implementations
across systems and thread counts. Perhaps the most readily visible
difference between the two sets of results is the fact that the erratic
performance characteristics associated with our Xeon Phi 7250
system begin at a lower thread count in the Gather benchmark.

4.3.8 Scatter/Gather. The results of our final benchmark, performed
using the Scatter/Gather kernel, are shown in Figure 9. As might be
expected, the results for this kernel are highly congruous with those

demonstrated by the individual Scatter and Gather benchmarks.
The same cross-socket behavior exhibited by our Xeon E5-2698 v3
platform in these benchmarks is repeated for the Scatter/Gather
kernel. Similarly, the Scatter/Gather kernel does not display an
affinity for either atomic Add or CAS kernel implementations. No-
tably, however, the GAMs performance across platforms for this
benchmark is slightly improved as compared to the Scatter and
Gather benchmarks. This behavior is particularly pronounced at
higher thread counts and for our more powerful platforms. As such,
we conclude that the combination of the Scatter and Gather mem-
ory access patterns within a single kernel leads to an improved
cache hit rate as the level of concurrency rises. Our Core i5-3210M
system again manifests surprisingly impressive performance in this
benchmark. However, the otherwise dominant performance of our
Xeon and Core i7-3930k systems further support our conjecture.
As with the Scatter and Gather benchmarks, our Core i7-4980HQ
system presents exceptionally poor performance for this kernel.
The Cortex-A72, Opteron 4130, and Xeon E5620 systems round out
the lowest performing platforms for this benchmark.

4.4 Analysis
4.4.1 Expected Correlations. In many ways, the results gathered
during our CircusTent evaluation conform to expectations. The
variance of GAMs performance across different kernels, regardless
of platform, is one such example. Here, the measured performance
is highest in kernels that utilize uniform memory access patterns,
such as the Stride-N and Stride-1 kernels. These uniform access
patterns leverage the principle of spatial locality to service a higher
percentage of memory requests from the cache. As such, they im-
prove performance for atomic operations in much the same manner
that they do so for traditional loads/stores. In contrast, kernels that
utilize unpredictable memory access patterns are often forced sat-
isfy requests from main memory. Accordingly, the recorded GAMs
performance of the Random Access and Pointer Chase kernels
is much lower. The performance of the Scatter, Gather, and Scat-
ter/Gather CircusTent kernels, which utilize semi-random, indexed
access patterns, falls between these two classifications. Predictably,
the Central kernel, wherein concurrent atomic operations to a sin-
gle memory location are repeatedly performed, exhibits the lowest
performance and quickly reaches an upper bound as the degree of
contention rises.

A similar generalization can be made in regard to the correlation
between cache size and platform performance. Notably, the systems
that sustain the highest GAMs performance across the distinct
CircusTent kernels, such as the Xeon E5-2670 v2, Xeon E5-2695
v4, and Xeon E5-2698 v3, correspond to the those that feature the
largest last-level caches. In contrast, the systems that often exhibit
the poorest performance, including the Cortex-A53, Cortex-A72,
and Opteron 4130, typically feature much smaller caches. This
disparity directly illustrates the benefits a large cache size offers
for atomic operation performance. These observations, consistent
with conventional architectural wisdom, increase our confidence
in the correctness and viability of the CircusTent benchmark suite.

4.4.2 New Insights. Our CircusTent evaluation also provides some
new insights into the performance of atomic operations that are
not readily apparent. The unexpectedly higher performance of our

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

CAS kernel implementations over their atomic Add analogs in some
scenarios is one such example. Conventional wisdom dictates that
the data overheads associated with the CAS instruction render it
less efficient than other atomic instructions such as Add. However,
our test platforms uniformly measured higher GAMs performance
for the CAS implementation of the CircusTent Random Access ker-
nel. We attribute this behavior to several contributing factors. First,
our OpenMP Random Access kernel implemented using the CAS
atomic primitive is written such that the value of VAL[IDX[i]] is
compared against itself to determine the proper store value. In the
event the values are equivalent, which is always the case for this
implementation, the CAS instruction again stores this same value
to the specified location. Herein, it is likely that the microarchitec-
ture recognizes that the value to be written and the value already
stored are, in fact, the same and optimizes performance by skipping
the store component of the CAS operation. In this case, the time
taken to execute each CAS instruction is reduced in a manner that
the Add instructions are not. Further, writing the same value into
each memory location during successive iterations of the kernel
loop prevents cache-line invalidations. In scenarios wherein cache
blocks are present in multiple private caches, this directly improves
overall performance by increasing the cache-hit rate at higher lev-
els of the cache hierarchy. Taken together, these behaviors explain
the apparent performance discrepancy between the CAS and ADD
implementations. Moreover, these observations suggest that future
compilers may be able to further optimize performance by replac-
ing atomic Add instructions with CAS analogs when values are
expected to be modified infrequently.

We also observe that the performance characteristics of two of
our test platforms deviate from our expectations. Since our Core
i7-4980HQ system features a 128 MiB shared L4 cache in addition to
its L3, we anticipated that this platform would be one of the higher
performers across kernels. For four of our benchmarks, however,
this system generated only mediocreGAMs performance that seems
more inline with its 6MiB L3 cache. Further, in our Random Access,
Scatter, Gather, and Scatter/Gather benchmarks, it was by far the
poorest performing platform. Given the random memory access
patterns inherent in these kernels, it seems likely that many cache
lines would be evicted from the L3 cache into the L4 during bench-
mark execution. Although we assume the eDRAM-based L4 cache
has a higher latency than its SRAM counterparts, it would still be
expected to service requests faster than main memory. As such,
we are currently exploring the microarchitecture of this system’s
memory hierarchy to better understand these results.

The performance of our Xeon Phi 7250 platform was also some-
what surprising. Although the cores present on this processor do
not share a true last-level cache, we anticipated the 16GB of MC-
DRAM operating in the cache configuration to appreciably improve
the performance of this platform. However, when compared to tri-
als performed on other systems with equivalent thread counts, the
Xeon Phi 7250 system performed poorly across the disparate set of
CircusTent kernels. Moreover, its performance inmany benchmarks
was abnormally erratic. Notably, this behavior became increasingly
aggravated as the thread count rose and was particularly prominent
in our Stride-1 and Pointer Chase benchmark results. We believe
this system’s erratic behavior and sub-par performance can be at-
tributed to several factors associated with its complex memory

subsystem. First, the absence of a true-last level cache on this plat-
form directly entails some degree of performance degradation. As
the L1 and L2 caches on this system cannot cache all the necessary
information, requests must often be serviced from the MCDRAM.
Although one might expect this MCDRAM to improve performance
in comparison to main memory, the opposite effect occurs. Here,
the increased latency of the MCDRAM combined with the irreg-
ular memory access patterns exhibited by the CircusTent kernels
diminish the platform’s performance [19]. As such, any requests
that would be serviced by the L3 cache, or even main memory, on
other systems often incur a significant penalty for the Xeon Phi
7250 platform. Second, and perhaps even more importantly, the 34
L2 caches resident on each tile in this processor are kept fully coher-
ent. As any invalidation for shared cache lines must be propagated
across this complex system, these operations are exceedingly costly.
These expensive operations, combined with the fact that any core
possessing an invalidated cache line must then service a subsequent
request from the MCDRAM, make shared cache lines across cores
not resident within the same tile an expensive proposition for this
system. As execution with an increasing thread count, as well as the
Stride-1 and Pointer Chase kernels themselves, represent scenarios
wherein cache line sharing is progressively likely, we feel this rein-
forces our conclusion regarding the performance of this platform.
Further, this behavior can also explain the variation between the
performance of the CAS and Add Stride-N kernel implementations.
As our Stride-N CAS implementation operates in the same manner
as the Random Access implementation previously detailed, cache
line invalidations are similarly not generated in this benchmark.
Thus, the absence of these invalidations allows the CAS implemen-
tation to far surpass that of the atomic Add implementation on our
Xeon Phi 7250 platform.

Beyond the considerable impact cache size and organization has
on atomic operation performance, the operating system and com-
piler may play a bigger role than originally anticipated. For example,
we observe that our Ryzen V1605B system performs significantly
better than expected in several of our kernel benchmarks despite
its modest cache size. As we have not yet been able to isolate any
microarchitectural factors that would explain this anomaly, it may
be a result of the newer operating system and compiler used on
this platform. While our Core i5-3210M also exceeds expectations
in several benchmarks, we suspect this performance may be a func-
tion of the smaller VAL array utilized on this system. As our Xeon
E5620 system performed significantly more poorly than similar sys-
tems with identical cache organizations, the operating system and
compiler may also be at fault here. Finally, we note that while our
Xeon E5-2698 v3 system demonstrated cross-socket performance
degradations in several of our benchmarks, none of our other dual-
socket platforms manifested the same behavior. Despite our efforts
to avoid simultaneous multithreading, it is possible the operating
systems of these platforms attempted to optimize performance by
scheduling threads to the same physical core rather than cross
socket boundaries.

5 CONCLUSIONS
The performance of atomic operations plays a critical role in the
scalability of existing systems. As the degree of heterogeneity and

CircusTent: A Benchmark Suite for Atomic Memory Operations MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC

complexity of memory hierarchies in future systems increases, this
trend can only be expected to continue, if not intensify. However,
to the best of our knowledge, a comprehensive methodology for
measuring the performance of memory subsystems with respect to
atomic operations has yet to emerge.

In this work, we introduced the open source CircusTent bench-
mark suite to fill this void. Orthogonal to previous works, Circus-
Tent measures the performance of disparate architectures in a gen-
eralized manner using common parallel programming paradigms.
Herein, we showcased the modular design of CircusTent that en-
ables native extensibility for future refinements and additional
programming models. We explored our current backend imple-
mentations, designed for both physically shared and distributed
shared memory systems, built upon the OpenMP, MPI, and Open-
SHMEMprogrammingmodels as well the xBGASmicroarchitecture
extension. We also detailed the eight kernels, designed to replicate
memory access patterns common in high-performance computing
applications, that constitute the CircusTent suite.

Finally, utilizing our OpenMP backend, we performed an exten-
sive evaluation of CircusTent across fourteen diverse test platforms.
Through the use of our normalized GAMs metric, we were able to
directly measure and compare the performance of these disparate
systems. In line with previous work and conventional wisdom, our
results showed that both the memory access patterns of a given ap-
plication and the cache organization of a target system significantly
affect its performance with respect to atomic operations. However,
our evaluation also revealed some new insights and diverged from
our expectations with regard to several of our test platforms.

We feel our evaluation clearly demonstrates the capabilities and
value of the CircusTent benchmark suite. As such, we believe that
CircusTent will prove to be a useful tool that aids in the benchmark-
ing of existing systems as well as the design and prototyping of
future systems.

6 FUTUREWORK
Although the current CircusTent infrastructure supports a number
of modern programming models, we would like to further expand
this set of models to better support heterogeneous platforms that
include diverse components such as GPUs and FPGAs. This will
require adding support for the OpenMP target construct and/or
inclusion of additional backends such as OpenACC or CUDA-based
implementations. Alternatively, a more holistic approach could be
applied through integration of amodern heterogeneous compilation
and runtime infrastructure such as SYCL [26].

In addition to the aforementioned heterogeneous system infras-
tructure, we also seek to expand our benchmark evaluation to
include distributed memory platforms and programming models.
Given the current support for MPI and OpenSHMEM, it would be
advantageous to execute CircusTent on a variety of interconnects
(Infiniband, Cray Aries, Ethernet) at scale in order to derive the per-
formance parameters of atomic memory operations for large-scale
system deployments.

Finally, as parallel programming models continue to evolve and
adapt to new system architectures, we will continually update the
current CircusTent backend implementations to exploit the latest
in programming model optimizations. Further, we fully expect to

continue developing new programming model backends for Cir-
cusTent in order to evaluate additional models for future scalable
systems.

ACKNOWLEDGMENTS
Research reported in this publication was supported by the U.S.
Department of Defense under Contract FA8075−14−D−0002. The
authors would also like to thank Los Alamos National Laboratory
for use of the Trinitite system. This work is authorized for unlimited
release under LA-UR-XX-XXXXX.

REFERENCES
[1] 2019. CircusTent Benchmark Suite Repository.

https://github.com/tactcomplabs/circustent.
[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. 2006. Unbounded Transactional Memory. IEEE Micro 26, 1 (Jan.
2006), 59–69.

[3] Lee Baugh, NaveenNeelakantam, andCraig Zilles. 2008. UsingHardwareMemory
Protection to Build a High-Performance, Strongly-Atomic Hybrid Transactional
Memory. In 2008 International Symposium on Computer Architecture. IEEE, 115–
126.

[4] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[5] Colin Blundell, E Christopher Lewis, and Milo MK Martin. 2006. Subtleties of
Transactional Memory Atomicity Semantics. IEEE Computer Architecture Letters
5, 2 (2006), 17–17.

[6] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. 2008. Software
Transactional Memory for Large Scale Clusters. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’08). Association for Computing Machinery, New York, NY, USA, 247–258. https:
//doi.org/10.1145/1345206.1345242

[7] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi, Yanzhe Chen, Zhaoguo Wang,
Binyu Zang, and Haibing Guan. 2017. Fast In-Memory Transaction Processing
Using RDMA and HTM. ACM Trans. Comput. Syst. 35, 1, Article Article 3 (July
2017), 37 pages. https://doi.org/10.1145/3092701

[8] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Everything
You Always Wanted to Know about Synchronization but Were Afraid to Ask. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP ’13). Association for Computing Machinery, New York, NY, USA, 33–48.
https://doi.org/10.1145/2517349.2522714

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In
Proceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA ’11). Association for Computing Machinery, New York, NY, USA, 365–376.
https://doi.org/10.1145/2000064.2000108

[10] Message Passing Interface Forum. 2012. MPI: A Message-Passing Interface
Standard Version 3.0. Chapter author for Collective Communication, Process
Topologies, and One Sided Communications.

[11] William Gropp. 2012. MPI 3 and Beyond: Why MPI Is Successful and What Chal-
lenges It Faces. In Recent Advances in the Message Passing Interface, Jesper Larsson
Träff, Siegfried Benkner, and Jack J. Dongarra (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–9.

[12] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer. 2003.
Software Transactional Memory for Dynamic-Sized Data Structures. In Pro-
ceedings of the Twenty-Second Annual Symposium on Principles of Distributed
Computing (PODC ’03). Association for Computing Machinery, New York, NY,
USA, 92–101. https://doi.org/10.1145/872035.872048

[13] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’93). Association for Computing
Machinery, New York, NY, USA, 289–300. https://doi.org/10.1145/165123.165164

[14] Fazeleh Hoseini, Aras Atalar, and Philippas Tsigas. 2019. Modeling the Perfor-
mance of Atomic Primitives on Modern Architectures. In Proceedings of the
48th International Conference on Parallel Processing (ICPP 2019). Association
for Computing Machinery, New York, NY, USA, Article Article 28, 11 pages.
https://doi.org/10.1145/3337821.3337901

[15] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC ’16). USENIX
Association, USA, 437–450.

[16] Tactical Computing Labs. [n.d.]. RISC-V Extended Addressing Architecture
Extension Specification Codenamed: xBGAS. https://github.com/tactcomplabs/
xbgas-archspec

https://doi.org/10.1145/1345206.1345242
https://doi.org/10.1145/1345206.1345242
https://doi.org/10.1145/3092701
https://doi.org/10.1145/2517349.2522714
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/872035.872048
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/3337821.3337901
https://github.com/tactcomplabs/xbgas-archspec
https://github.com/tactcomplabs/xbgas-archspec

MemSys ’20, Sept 28–Oct 01, 2020, Washington, DC Brody Williams, John D. Leidel, Xi Wang, David Donofrio, and Yong Chen

[17] Patrick Lavin, Jeffrey Young, Jason Riedy, Richard Vuduc, Aaron Vose, and
Dan Ernst. 2018. Spatter: A Tool for Evaluating Gather / Scatter Performance.
arXiv:cs.PF/1811.03743

[18] John D. Leidel, Xi Wang, Frank Conlon, Yong Chen, David Donofrio, Farzad
Fatollahi-Fard, and Kurt Keville. 2018. XBGAS: Toward a RISC-V ISA Extension
for Global, Scalable Shared Memory. In Proceedings of the Workshop on Memory
Centric High Performance Computing (MCHPC’18). Association for Computing
Machinery, New York, NY, USA, 22–26. https://doi.org/10.1145/3286475.3286478

[19] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis. 2017. Explor-
ing the Performance Benefit of Hybrid Memory System on HPC Environments. In
2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 683–692.

[20] Stephen W. Poole, Oscar Hernandez, Jeffery A. Kuehn, Galen M. Shipman, An-
thony Curtis, and Karl Feind. 2011. OpenSHMEM - Toward a Unified RMA Model.
Springer US, Boston, MA, 1379–1391. https://doi.org/10.1007/978-0-387-09766-
4_490

[21] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating the cost
of atomic operations on modern architectures. In 2015 International Conference
on Parallel Architecture and Compilation PACT). IEEE, 445–456.

[22] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing
(PODC ’95). Association for Computing Machinery, New York, NY, USA, 204–213.
https://doi.org/10.1145/224964.224987

[23] Open Source Software Solutions. [n.d.]. OpenSHMEM 1.4 Specification. http:
//www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

[24] Oreste Villa, Gianluca Palermo, and Cristina Silvano. 2008. Efficiency and Scal-
ability of Barrier Synchronization on NoC Based Many-Core Architectures. In
Proceedings of the 2008 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES ’08). Association for Computing Machin-
ery, New York, NY, USA, 81–90. https://doi.org/10.1145/1450095.1450110

[25] Xi Wang, Brody Williams, John D. Leidel, Alan Ehret, Michel Kinsy, and Yong
Chen. 2020. Remote Atomic Extension (RAE) for Scalable High Performance
Computing. In Proceedings of the 57th Annual Design Automation Conference 2020
(DAC ’20).

[26] Michael Wong and Ruyman Reyes. 2018. What’s New in SYCL 1.2.1 and How
to Explore the Features. In Proceedings of the International Workshop on OpenCL
(IWOCL ’18). Association for Computing Machinery, New York, NY, USA, Article
11, 1 pages. https://doi.org/10.1145/3204919.3204930

http://arxiv.org/abs/cs.PF/1811.03743
https://doi.org/10.1145/3286475.3286478
https://doi.org/10.1007/978-0-387-09766-4_490
https://doi.org/10.1007/978-0-387-09766-4_490
https://doi.org/10.1145/224964.224987
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
https://doi.org/10.1145/1450095.1450110
https://doi.org/10.1145/3204919.3204930

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Atomic Operations & Synchronization
	2.2 Transactional Memory
	2.3 Memory Benchmarks

	3 CircusTent
	3.1 Benchmark Overview
	3.2 Programming Models
	3.3 Algorithms
	3.4 Normalizing the Results

	4 Benchmark Evaluation
	4.1 Platforms
	4.2 Methodology
	4.3 Results
	4.4 Analysis

	5 Conclusions
	6 Future Work
	Acknowledgments
	References

